
1

1

資訊系統原理

郭大維教授
臺灣大學資訊工程系

2
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents

?Computer Systems Overview
?Operating Systems Concept
?UNIX
?Other System Services

?Unified Modeling Language
?UML Introduction
?System Development Process
?Use Cases, Class Diagrams, etc.

2

3
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 647-693.

4
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Created by Ken Thompson & Dennis Ritchie
at Bell Laboratories in 1969 & on PDP-7.
?ACM Turing award winners for the design of

UNIX in 1983.
?C programming language inventor: Dennis

Ritchie.
?Major Contributors:
?Bell Laboratories, Computer Systems Research Group

(CSRG) of the University of California at Berkley
(released in BSD), UNIX System Laboratories
(USG/USDL/ATTIS/DSG/USO/USL), etc.

3

5
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX
Berkley
Software
Distributions

Bell Labs
Research

UNIX System
Laboratories
(USG/USDL/
ATTIS/DSG/
USO/USL)

1BSD,… ,
4.0BSD

4.3BSD
4.3BSD Tahoe
4.3BSD Reno
4.4BSD

SUNOS
Solaris
Solaris 2

Mach

First Edition

Sixth Edition
Seventh Edition

XENIXSystem V
Release 2,3

UNIX
System V
Release 4

Chorus

* POSIX (ISO) standard!

6
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX
?Influence
? fork() from Berkley’s GINIE, 4.2 BSD file-mapping

virtual memory interface from TENEX/TOPS-20,
4.4BSD virtual memory interface from MACH. fcntl
system call from System V. Disk quotas and 4.3
BSD time-zone-handling package from the user
community.

?4BSD job control, reliable signals, multiple file-
access permission groups, and file system
interface were adopted by AT&T UNIX System V,
IEEE POSIX.1 standard, etc. 4BSD socket ported
to AT&T System III. 4BSD implementation of
TCP/IP networking protocol suite widely adopted!

4

7
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX - Design Goals

?4.2BSD - 1983
?DARPA (Defense Advanced Research Projects Agency)

wanted a standard research operating systems
for the VAX.

?Networking support - remote login, file transfer
(ftp), etc. Support for a wide range of hardware
devices, e.g., 10Mbps Ethernet.

?Higher-speed file system.
?Revised virtual memory to support processes

with large sparse address space (not part of the
release).

? Inter-process-communication facilities.

8
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX - Design Goals

?4.3 BSD - 1986
?Improvement of 4.2 BSD

?Loss of performance because of many new facilities
in 4.2 BSD.

?Bug fixing, e.g., TCP/IP implementation.
?New facilities such as TCP/IP subnet and routing

support.

?Backward compatibility with 4.2 BSD.
?Second Version - 4.3 BSD Tahoe

?support machines beside VAX
?Third Version - 4.3 BSD Reno

?freely redistributable implementation of NFS, etc.

5

9
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX - Design Goals

?4.4 BSD - 1993
?POSIX compatibility
?Deficiencies remedy of 4.3 BSD

?Support for numerous architectures such as 68K,
SPARC, MIPS, PC.

?New virtual memory better for large memory and
less dependent on VAX architecture - Mach.

?TCP/IP performance improvement and
implementation of new network protocols.

?Support of an object-oriented interface for
numerous filesystem types, e.g., SUN NFS.

10
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX - Major UCB CSRG Distributions

?Major new facilities:
?3BSD, 4.0BSD, 4.2BSD, 4.4 BSD

?Bug fixes and efficiency
improvement:
?4.1 BSD, 4.3BSD

6

11
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Distinguishing Features
?Written nearly completely in a high-level

language, i.e., C.
?High portability!

?Distributed in source form.
?Contributions and bug fixing from

everywhere!

?Provide powerful primitives and functions
such as concurrent processes.

12
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Design Principles

?Simple Algorithms for Implementation
?Replaceable Standard User Interface
?Shell

?Time-Sharing
?Simple Priority-Driven CPU Scheduling

?Demand-Paging Virtual Memory (4.3BSD)
?Swapping

?Similar treatments of disk files and I/O
devices

7

13
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

14
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX Architecture

terminal controller, terminals,
physical memory, device controller,
devices such as disks, memory, etc.

CPU scheduling, signal handling,
virtual memory, paging, swapping,
file system, disk drivers, caching/buffering, etc.

Shells, compilers, X, application programs, etc.

UNIX

Kernel interface
to the hardware

System call
interface

useruser user useruser user
user

User
interface

8

15
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX Architecture

?A Layer Architecture
?System Calls
?Programmer Interface to UNIX
?Trap 40 – VAX 4.2BSD
?R0 – error code

?Categories
?File Manipulation

?Devices are special files under “/dev”!

?Process Control
?Information Manipulation

16
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls - File Manipulation

?File
?A sequence of bytes

?Directory
?A file that includes info on how to find other files.

vmunix

/

dev

console lp0 …

bin

csh …

lib

libc.a …

usr

include …

etc

passwd …

9

17
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls - File Manipulation
? Path name
?Absolute path name

?Start at the root / of the file system
? /user/john/fileA

?Relative path name
?Start at the “current directory”which is an attribute of the process

accessing the path name.
? ./dirA/fileB

? Links
?Symbolic Link – 4.3BSD

?A file containing the path name of another file can across
file-system boundaries.

?Hard Link
?. or ..

18
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls - File Manipulation

?Directories
?/vmunix - binary root image of UNIX
?/dev - device special files, e.g., /dev/console
?/bin - binaries of UNIX system programs
?/usr/ucb - written by Berkley instead of AT&T
?/usr/local/bin - written at the local site

?/lib - library files, e.g., those for C
?/user - directories for users, e.g., /user/john
?/etc - administrative files and programs,

e.g., passwd
?/tmp - temporary files

10

19
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls - File Manipulation

?Operations
?open, close, read, write, trunc, lseek, dup,

rename, chmod, chown, fcntl, ioctl, mkdir,
cd, opendir, readdir, closedir, etc.
?File descriptor

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

i-node
i-node

i-nodesync

data block
data block

20
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls – Process Control

?A process
?A program in execution

if (pid = fork()) {
…
wait();
} else {
execve(“a.out”);
}

forkshell
process

wait
shell
process

execve() exit

zombie process

child process

11

21
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls – Process Control

?User ID
?Effective UID, real UID
?With setuid bit in the inode of a file!

?Operations
?setuid, getuid, geteuid, getgid, getegid,

getgroups, etc.

init …

getty process login process shell process
…

getty process login process shell process

… …

22
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls - Signals
?Signal – no priority!
?A facility for handling exceptional

conditions similar to software interrupts
?Generated by errors, keyboard, events,

etc, e.g., kill -9 pid
?~ 20 signals, such as SIGSEGV, SIGINT

(^C) – Multiple instances could be lost!
?POSIX – reliable signals

?User-level signal handlers, masking, etc.
?Except SIGKILL, SIGINT, SIGQUIT,

which is for the killing of run-away
processes.

OS

P-A

hardware

P-B

12

23
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls – Process Control

?Job (or process group)
?A group of processes frequently cooperate to

accomplish a common goal, e.g., ps | lpr.
?setpgrp()
?One job can use a terminal I/O at any time –

foreground job!
?SIGINT, SIGSTOP, or SIGTTOU vs

SIGCONT
?freeze vs resume

?Useful for X – each window as a terminal
?SIGWINCH

24
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

System Calls – Information
Manipulation & Library Routine

?Information Manipulation
?gettimeofday/settimeofday (us),

gethostname, getpid, getgid, etc.

?Library routines
?With header files, e.g., stdio.h, math.h,

additional program support is provided.
?Over 150 system calls for 4.3BSD, over

300 library functions for C
?Eventually result in system calls!

?getchar() -> read() if the file buffer is empty.

13

25
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

26
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

User Interface
?Interface of system programs
?File/directory-oriented
?Mkdir, rmdir, pwd, cd, ls, cp, mv, rm,

cat, more, head, tail, diff, grep, etc.

?Editors
?Emacs, vi, ed, etc.

?Compilers
?C, Pascal, FORTRAN, etc.

?Others
?Mail, X, sort, etc.

14

27
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

User Interface – Shells and
Commands

?Shell – commander interpreter
?/bin/sh (Bourne shell by Steve

Bourne), /bin/csh (C shell by Bill
Joy), etc.

forkshell
process

wait
shell
process

execve() exit

zombie process

child process

28
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

User Interface – Shells

?ls | pr | lpr
init

csh

lprprls

p_pptrp_cptr

p_cptr
p_pptr

p_pptrp_pptr

p_osptrp_osptr

p_ysptr p_ysptr
Siblings!

15

29
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

User Interface – Shells and
Commands

?Commands
?Shell-built-in commands, e.g., cd, etc.
?System programs, e.g., ls, ps, etc.
?Search Path (e.g. those in .cshrc or .login)

?set path=(/usr/sbin /usr/ucb /usr/bin
/usr/local/bin /etc /usr/etc .)

?setenv LD_LIBRARY_PATH
/usr/local/lib:/usr/lib:/usr/openwin/lib

?Foreground vs Background Cmds
?ps& vs fg

30
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

User Interface – Standard I/O

?Standard file descriptors
?0, 1, 2 for stdin, stdout, stderr

?I/O redirection
?pipe: carry data from one process

to another!
?ls | pr > filea
?lpr < filea
?make program >& err

?Shell script

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

16

31
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

32
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management
?How to represent a process for
?Process control
?CPU scheduling

?Process Control Block (PCB)
?proc[i]
?Everything the system must know when the

process is swapped out.
?pid, priority, state, timer counters, etc.

?.u
?Things the system should know when process

is running
?signal disposition, statistics accounting, files[], etc.

17

33
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?4.3BSD

text
structure

proc[i]
entry

page
table Code Segment

Data Segment

PC

heap

user stack
argv, argc,…

sp

.u

per-process
kernel stack

p_textpx_caddr

p_p0br

u_proc

p_addr

Red
Zone

34
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?proc[I] entry
?pid, ppid
?user_priority, system_priority
?state, e.g., SRUN, SSLEEP,, ZOMBIE, etc.

?signal mask, signal state
?timer counters
?Etc

?text structure (memory resident)
?A list to all processes sharing the text

segment – a counter is maintained!

18

35
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS
?Virtual memory address space – user

space
?Text segment
?Read-only except when debuggers’

checkpoints must be set up (rw).

?Data and stack segments
?RW mode!

?.u called user structure
?System call parameters and return

values, table of opened files, etc.

36
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?Resources for the process in the
kernel space
?A page table per process
?per-process kernel stack
?For the process running in the kernel

mode, e.g., for interrupt stacking.
?System data segment = .u + per-

process kernel stack
?Other resources
?PC, CPU registers, opened files, etc.

19

37
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management – Life
Cycle

?Process State

SIDL
SRUN

SRUN

SSLEEP

SZOMB
fork

scheduled

interrupt exit

I/O or event waiting
completed

SSTOP

suspend

resume

38
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Lists
?Ready Queue

…

Priority-decreasing

0
1
2

proc[i] proc[j]

proc[k]

allproc

zombproc

freeproc

proc[j] …

proc[m] …

proc[n] …

exit()

wait()

20

39
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management – fork

? fork()
1. Allocate a new proc entry
2. Register the “text structure”
3. Allocate memory for data and stack

segments
4. Copy the data and stack segments of its

parent to those of the process.
5. Build a new page table by copying from

the page table of its parent!
6. Copy .u

? Open file descriptors, usr/grp identifiers,
signal handling, etc.

if (pid = fork()) {
…
wait();
} else {
execve(“a.out”);
}

40
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management –
execve/vfork

? execve()
?Discard text, data, and stack segments of the process and

reset its page table
?Load the executable and rebuild text, data, and stack

segments and its page table
?Reset signal handling routines, etc.

? vfork()
?Borrow segments of its parent
? Implementation Concerns

?Suspend the parent until the process terminates or call execve()
?Or

?duplicate the page table of its parent
?Do not create pages unless Copy-on-write pages

21

41
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management

?4.4BSD

proc[i]
entry

process grp…

file descrptors

VM space region lists

page
table Code Segment

Data Segment
heap

user stack
argv, argc,…

.u

per-process
kernel stack

p_p0br

u_proc

p_addr

42
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Scheduling Priority
?User-mode: p_usrpri 50~127
?Kernel-mode: p_priority 0 ~ 49
?For the waiting of any event in the kernel mode.
?Processes with p_priority between (PZERO,

PUSER) (i.e., 22 and 50) would be waken up by
a signal. (in 4.3BSD, PZERO = 25)

?CPU Scheduling
?round-robin priority-driven scheduling
?quantum = 100ms

22

43
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Ready Queue

…

Priority-decreasing

0
1
2

proc[i] proc[j]

proc[k]

127

•Preemptive Scheduling Policy
•Once a process arrives with a
higher priority while the running
process is in the user mode or exits
from a system call, a context switch
occurs immediately!

44
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling
? Scheduling Priority
?Raising Priority
?Longer period being blocked, e.g., one sec
?Blocking in the kernel mode
?nice() ~ -20

?Lowering priority
?Recent CPU usage
?Exit from the kernel mode
?nice() ~ +20

p_usrpri = PUSER + ceiling(p_cpu/4) + 2p_nice ; every tick
p_cpu = [2load/(2load+1)]*p_cpu+p_nice ; every second
p_cpu = p_cpu [2load/(2load+1)]p_slptime ; once the process is awaken.

23

45
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Context Switch
?Synchronous CS
?Voluntary

?Call system calls and then sleep

?Involuntary
?Time quantum is up!

?Asynchronous CS
?Device interrupts

46
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling - Revisiting

Bottom
Half

Top
Half

processesUser
Space

OS

hardware

Timer expires to
•Expire the running process’s

time quota
•Keep the accounting info

for each process

System calls such as I/O req
which may cause the releasing
CPU of another process!

24

47
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling
?Synchronous Voluntary Context Switch
?A system call finally invoke sleep(&wchan)!
?wchan – address of some data struture

?Lbolt: wait for one second
?proc: wait for child process
?u: wait for a signal

?buffer header: wait for I/O operations
?File reading, block flushing, page fault, etc.

?Race Condition
Process call

The waiting event, such as an interrupt,occurs

call sleep()

48
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?A general solution in UNIX
for resolving race conditions!
?Raise hardware processor

priority
?e.g., mask interrupts

?Single-thread kernel
?An obstacle for multi-CPU

UNIX!

Bottom
Half

Top
Half

process
system calls, e.g.
READ/WRITE

hardware interrupts

25

49
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management

?scheduler (pid = 0)
?CPU scheduling

?init (pid = 1)
?Create daemons, login processes,

etc.

?pagedaemon (pid = 2)
?Swapper – mid-term scheduler

50
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

26

51
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Virtual Memory – Demand paging

File System

Swap Space

Run

Swap-Out

Swap-In

52
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Demand Paging
?Page fault -> disk I/O -> modify the

page table -> rerun the instruction!

F

P D

P

F D

page fault
disk I/O

File System /
Swap Space

27

53
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?4.3BSD
?Reasons for page fault
?Initialized data and text
?Corresponding page-table entries

are marked as fetch-on-demand
(fod)

?Un-initialized data
?Corresponding page-table entries

are marked as invalid -> zero-
filled

54
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Page Replacement
?When the number of free pages is under

a threshold, some pages are paged out
to release space so that the needed
pages can be moved in from disks.
?Done by pageout() – system process

pagedaemon is waked up when the
number of free memory is less than
lotsfree, e.g., ¼ MM size!
?Approximate Least-Recently-Used

(LRU) policy

28

55
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Working Set Model
?Each process in memory should be

allocated with at least those pages in
the working set to prevent trashing.

?Swapping
?It is invoked only when paging is unable

to keep up with memory needs.
?pagedaemon – waked up when free

memory is under minfree ,e.g., 1/16
MM size.

56
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

? 3BSD
?Virtual memory – demand paging
?Page replacement – approx. LRU
?Pre-allocated swap area

? 4.1BSD
?Logical page – cluster
?pre-paging
?Caching recently used text pages

? 4.3BSD
?Text images and page tables retained in

cache after exit

29

57
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

58
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System
?Main Objects
?Files and Directories

?Data Blocks
?Physical Blocks
?Sector – 512bytes

?Logical Blocks
?4.1BSD – 1KB
?4.2BSD – block size, e.g., 4KB, and

fragment size, e.g., 512B, initialized during
file-system creation.

30

59
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System – i-node

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 380.

mode
owner

timestamp
size block
ref-count

triple indirect

double indirect

single indirect

direct blocks

data
data
data
…

…

data
data

data
…

…
…

…

data

data
…

data
…

•4KB block size
•12 direct pointers

•48KB
•1 single indirect

•4-byte block ptr
•1K * 4KB = 4MB

•>> 4GB for the largest file!
(offset = 32 bits, 4G=232)

60
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System – Directories
?Directory
?A special file distinguished by its i-node

type.
?Since 4.2BSD, file names can be up to

255bytes – a variable length for each
directory entry.
?Linear search of empty directory entry!
?Given a path name, each directory file

is opened and searched for the next
node in the path until the desired i-
node is returned, illegal access is
found, or error occurs.

31

61
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Sharing of Files - Revisiting

?Hard Link
?Each directory entry creates a

hard link of a filename to the i-
node that describes the file’s
contents.

?Symbolic Link (Soft Link)
? It is implemented as a file that

contains a pathname.
?Example: Shortcut on

Windows

foo

bar

/usr/joe

/usr/sue
File i-node:

Reference = 2

foo

bar

/usr/sue

File i-node:
Reference = 1

/usr/joe

File i-node:
Reference = 1

data file:
/usr/joe/foo

* Problem – infinite loop in tracing a path name
with symbolic links – 4.3BSD, no 8 passings of
soft links

* Dangling pointers

62
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File Systems Revisiting

?File Methods
?Sequential Access
?Basic Operations

?READ, WRITE + file pointers

?Direct Access
?Basic Operations

?READ N or Write N, where N is the relative block
number.

File: a sequence of bytes … ..

a sequence of
(logical) blocks

32

63
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System
?Process Control Block

Struct PCB {

char p_pid;

int pc; /* program counter */

…

int files[NFILE];

} PCB[NPROC];

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

i-node
i-node

i-nodesync

data block
data block

kernel spaceuser space

open create an entry
(file current position, etc)

file-open-count++
Load the corresponding
i-node if it is absent.

* The i-node structure of a file includes info regarding the disk location of the file.

64
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System
?Process Control Block

Struct PCB {

char p_pid;

int pc; /* program counter */

…

int files[NFILE];

} PCB[NPROC];

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

i-node
i-node

i-nodesync

data block
data block

kernel spaceuser space

read/write adjust the current
file position - offset

Modify the corresponding
in-core i-node structure if needed.

* When the file is closed, and file-open-count = 0, then the disk-resident i-node should be modified!

33

65
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – Directory Structure

?Partition (/Volume):
?a low level structure in

which files and
directories reside.

?Directory:
?Records info for “all”

files on a partition.

directory

files

directory

files

…

disks

partition

partition

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 349,354-358.

66
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System - Mounting

?(name of the device, mount point)

tmp

Use an appropriate device driver
to read the device directory and
verify the format => mount!

•Mount point: the location within
the file structure at which to
attach the file system.

•A bit in the i-node indicates that
whether a file system is mounted
on it! -> find the i-node of the
root of the mounted file system.

UNIX: manual mounting

34

67
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System - Mounting
?When a mounting-point node in a path

name is reached, the mounting table is
searched.
?(major number, minor number)
?major number identifies the right driver.
?minor number identifies the device

?Boot block
?First sector of a file system – primary

bootstrap program
?Call a secondary bootstrap program

residing in the next 7.5K.

68
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX File System
?4.3BSD
?Cylinder Group
?Goal: Localization of disk

movements
?Several consecutive cylinders
?A superblock
?Size of the group,

block/fragment size, etc.
?An array of inodes
?Data blocks

35

69

TCP/IP for Linux

郭大維教授
ktw@csie.ntu.edu.tw

國立台灣大學 資訊工程系

70
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Network Topology

?Why distributed systems?
?Resource and information sharing
?Reliability

?Issues:
?Basic Cost
?Communication Time and

Predictability
?Reliability

36

71
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Network Topology

?Topologies
?Fully Conncted Networks
?Switches

?Hierarchical Networks
?GSM

?Ring Networks
?FDDI

?Multiaccess Bus Networks
?Ethernet

72
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP

gateway

gateway

TARNET

HINET

Intranet
AIntranet

AIntranet

Intranet

router

Intranet

37

73
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Network Contention
?CSMA/CD (carrier sense with multiple

access / collision detection)
?Listen before transmission
?Try again after some random time
?Example – Ethernet (IEEE802.3)

?Token Passing
?Transmit msgs when the token arrives.
?FDDI

?Msg Slots
?Circulate slots
?Cambridge Digital Communication Ring

74
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

ISO Protocol Layers
? Application layer

? Interacting with users, e.g., remote login

? Presentation layer
? Resolve formats, etc.

? Session layer
?Maintain session

? Transport layer
? In-order msg transfer, etc, e.g., TCP

?Network layer
? Routing packages, etc.

?Data-link layer
? Framing, error detection, etc.

? Physical layer
? Electrical details of the transmission of the bit

streams.

38

75
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Internet
?Origin:
?ARPANET (1970’s - 1988)
?NSF NET (no longer exist?) and Internet.

?World Wide Web (WWW)
?Utilize TCP/IP over ARPANET/Internet.
?Linux adopts Unix 4.3BSD sockets and

supports TCP/IP.

•Definition of “Intranet”: roughly speaking for any network under
one authorization, e.g., a company or a school.

•Often in a Local Area Network (LAN), or connected LAN’s.
• Having one (or several) gateway with the outside world.
• In general, it has a higher bandwidth because of a LAN.

76
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP
? IP Address:
?140.123.101.1

?256*256*256*256 combinations
?140.123 -> Network Address
?101.1 -> Host Address

?Subnet:
?140.123.101 and 140.123.102

?Mapping of IP addresses and host names
?Static assignments: /etc/hosts
?Dynamic acquisition: DNS (Domain Name Server)

? /etc/resolv.confg

?If /etc/hosts is out-of-date, re-check it up with DNS!

?Domain name: cs.ccu.edu.tw as a domain name for
140.123.100, 140.123. 101, and 140.123.103

39

77
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Name Resolution in TCP/IP
Network
?Name Resolution
?A hierarchical host name
?bob.csie.ntu.edu.tw

?A 32-bit Internet Number (host id)
?140.112.101.32

?How it works?
?The sending system checks its routing

table to locate a router. The routers use
the network part of the host-id to transfer
the packet to the destination network.

78
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Name Resolution in TCP/IP
Network
?Mapping of Ethernet (IEEE 802.3) physical

addresses and IP addresses
?Each Ethernet card has a built-in Ethernet physical

address, e.g., 08-01-2b-00-50-A6.

?Ethernet cards only recognize frames with their
physical addresses.

?Linux uses ARP (Address Resolution Protocol) to know
and maintain the mapping.
?Periodically broadcast requests over Ethernet for IP

address resolution over ARP.
?A UDP packet with the host-id and Ethernet address

?Machines with the indicated IP addresses reply with their
Ethernet physical addresses.

40

79
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Name Resolution in TCP/IP
Network
?Within a network,
?Each host caches the info in its ARP

cache with aging.
?When a process specifies a host to

communicate.
?The kernel determine the host’s in using

domain name server (DNS) lookup.
?Pass all layers with Ethernet address in

the packet.
?The Host receives the packets and pass

all layers.

80
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Name Resolution over Internet
? Domain Name Service defines the structure

of the host names and name-to-address
resolution!
? A process on a host A communicates with

bob.cs.utexas.edu:
1. The kernel of A issues a req to the name server

of the “edu”domain to ask for the name
server’s host address for “utexas.edu”.

2. The kernel of A issues a req to the name server
of the “utexas.edu”domain to ask for the name
server’s host address for “cs.utexas.edu”.

3. The kernel of A issues a req to the name server
of the “cs.utexas.edu”domain to ask for the
name server’s host address for
“bob.cs.utexas.edu”.

41

81
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Name Resolution over Internet
?How to reduce the inefficiency of the

protocol?
?Use local cache!

?How to resolve the crash problem of name
servers?
?A duplicate!

?Name resolution
?Autonomous at all sites!
?The kernel at the destination host is

responsible to passing the info to the right
process!

82
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP
TCP header + Data

IP header Data

Ethernet header DataAn Ethernet
frame

An IP packet

A TCP packet

• Each IP packet has an indicator of which protocol used, e.g., TCP or UDP

42

83
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Routing
?Def:
?How are msgs sent through network?

?Common routing scheme
?Fixed routing
?A path is specified in advance & does not

change!
?Virtual routing
?A path is fixed for a session, e.g., a file

transfer or remote login!
?Dynamic routing
?A path is chosen only when a msg is sent.
?Wrong sequence order!

84
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP
?Router
?With a Routing table
?Use some routing protocol, e.g., to maintain

network topology by broadcasting.
?Connecting several subnets (of the same IP-

or-higher-layer protocols) for forwarding
packets to proper subnets.

?Gateway
?Functionality containing that of routers.
?Connecting several subnets (of different or the

same networks, e.g., Bitnet and Internet)for
forwarding packets to proper subnets.

43

85
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP

gateway

gateway

TARNET

HINET

Intranet
AIntranet

AIntranet

Intranet

router

Intranet

86
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Network Layers in Linux

PPP SLIP Ethernet

Internet Protocol (IP)Transport Layer ARP

TCP UDP

INET sockets

BSD sockets
Kernel

Applicationsapplications

44

87
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

TCP/IP
?Transmission Control Protocol (TCP)
?Reliable point-to-point packet

transmissions.
?Applications which communicate over

TCP/IP with each another must provide IP
addresses and port numbers.
?/etc/services
?Port# 80 for a web server.

?User Datagram Protocol (UDP)
?Unreliable point-to-point services.

?Both are over IP.

